Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Computing
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improved Classical and Quantum Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

Improved classical and quantum algorithms for the shortest vector problem via bounded distance decoding
Authors: Divesh Aggarwal; Yanlin Chen; Rajendra Kumar; Yixin Shen;

Improved Classical and Quantum Algorithms for the Shortest Vector Problem via Bounded Distance Decoding

Abstract

The most important computational problem on lattices is the Shortest Vector Problem (SVP). In this paper, we present new algorithms that improve the state-of-the-art for provable classical/quantum algorithms for SVP. We present the following results. $\bullet$ A new algorithm for SVP that provides a smooth tradeoff between time complexity and memory requirement. For any positive integer $4\leq q\leq \sqrt{n}$, our algorithm takes $q^{13n+o(n)}$ time and requires $poly(n)\cdot q^{16n/q^2}$ memory. This tradeoff which ranges from enumeration ($q=\sqrt{n}$) to sieving ($q$ constant), is a consequence of a new time-memory tradeoff for Discrete Gaussian sampling above the smoothing parameter. $\bullet$ A quantum algorithm for SVP that runs in time $2^{0.950n+o(n)}$ and requires $2^{0.5n+o(n)}$ classical memory and poly(n) qubits. In Quantum Random Access Memory (QRAM) model this algorithm takes only $2^{0.835n+o(n)}$ time and requires a QRAM of size $2^{0.293n+o(n)}$, poly(n) qubits and $2^{0.5n}$ classical space. This improves over the previously fastest classical (which is also the fastest quantum) algorithm due to [ADRS15] that has a time and space complexity $2^{n+o(n)}$. $\bullet$ A classical algorithm for SVP that runs in time $2^{1.669n+o(n)}$ time and $2^{0.5n+o(n)}$ space. This improves over an algorithm of [CCL18] that has the same space complexity. The time complexity of our classical and quantum algorithms are obtained using a known upper bound on a quantity related to the lattice kissing number which is $2^{0.402n}$. We conjecture that for most lattices this quantity is a $2^{o(n)}$. Assuming that this is the case, our classical algorithm runs in time $2^{1.292n+o(n)}$, our quantum algorithm runs in time $2^{0.750n+o(n)}$ and our quantum algorithm in QRAM model runs in time $2^{0.667n+o(n)}$.

SICOMP journal version and application to Lattice Isomorphism Problem over Z^n, 43 pages

Keywords

FOS: Computer and information sciences, time-space tradeoff, bounded distance decoding, Data Structures and Algorithms, Cryptography and Security, quantum computation, Randomized algorithms, Quantum algorithms and complexity in the theory of computing, shortest vector problem, lattices, Lattices and convex bodies (number-theoretic aspects), Analysis of algorithms, Data Structures and Algorithms (cs.DS), Cryptography and Security (cs.CR), Number-theoretic algorithms; complexity, discrete Gaussian sampling

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green