
Energy disaggregation is the process of disaggregating a household's total energy consumption into its appliance-level components. One of the limitations of energy disaggregation is its generalization capacity, which can be defined as the ability of the model to analyze new households. In this article, a new energy disaggregation approach based on adversarial autoencoder (AAE) is proposed to create a generative model and enhance the generalization capacity. The proposed method has a probabilistic structure to handle uncertainties in the unseen data. By transforming the latent space from a deterministic structure to a Gaussian prior distribution, AAEs decoder transforms into a generative model. The proposed approach is validated through experimental tests using two different datasets. The experimental results exhibit a 55% MAE performance increase compared to deterministic models and 7% compared to probabilistic models. In addition, considering the predictions made when the appliances are on, the AAE improves the performance by 16% for UKDALE and 36% for REDD dataset compared to the state-of-art models. Moreover, the online analysis performance of AAE is examined in detail, and the disadvantages of instant predictions and the possible solutions are extensively discussed.
Generative adversarial networks, Adversarial autoencoder, Energy disaggregation, Probabilistic energy disaggregation, Nonintrusive load monitoring (NILM), Deep learning, Residential energy disaggregation, Online energy disaggregation
Generative adversarial networks, Adversarial autoencoder, Energy disaggregation, Probabilistic energy disaggregation, Nonintrusive load monitoring (NILM), Deep learning, Residential energy disaggregation, Online energy disaggregation
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
