Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao zbMATH Openarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2003
Data sources: zbMATH Open
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SUPPORT OF A JOINT RESOLUTION OF IDENTITY AND THE PROJECTION SPECTRAL THEOREM

Support of a joint resolution of identity and the projection spectral theorem
Authors: Pulemyotov, Artem D.;

SUPPORT OF A JOINT RESOLUTION OF IDENTITY AND THE PROJECTION SPECTRAL THEOREM

Abstract

Let A = (Ax)x ∈ Xbe a family of commuting normal operators in a separable Hilbert space H0. Obtaining the spectral expansion of A involves constructing of the corresponding joint resolution of identity E. The support supp E is not, in general, a set of full measure. This causes numerous difficulties, in particular, when proving the projection spectral theorem, i.e. the main theorem about the expansion in generalized joint eigenvectors. In this work, we show that supp E has a full outer measure under the conditions of the projection spectral theorem. Using this result, we simplify the proof of the theorem and refine its assertions.

Country
Australia
Keywords

Spectral theorem, support, Several-variable operator theory (spectral, Fredholm, etc.), Joint resolution of identity, joint resolution of identity, Generalized eigenvector, projection spectral theorem, generalized eigenvector, Spectrum, resolvent, (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!