
Mobile computation offloading (MCO) is a technique that can help reduce energy consumption of mobile devices (MDs) by offloading their tasks to more powerful devices for execution. In MCO, the offloading decision for a task depends on availability of both communication and computation resource. In small cell cellular networks, cloudlet servers are usually co-located with the small base stations (SBSs). As a result, offloading decisions of the MDs are coupled with SBS associations, while strong overlapping coverage between the SBSs can result in complicated interference conditions in wireless transmissions that affect the offloading performance. In this paper, offloading decisions and SBS associations are jointly optimized with transmission power and channel assignments in a small cell cellular network. The objective is to minimize the total energy consumption of all MDs, subject to task’s latency constraints. The problem is first formulated as a mixed binary nonlinear programming problem, then transformed and solved using the general bender decomposition (GBD). A heuristic solution is proposed that recursively allows more MDs to make offloading decisions based on the current transmission conditions. Compared to using GBD, this solution results in much lower worst-case complexity, while achieving good energy performance for a wide range of system parameters.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 30 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
