Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/fk...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/8d...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new characterization of the dual space of the HK-integrable functions

توصيف جديد للمساحة المزدوجة لوظائف هونج كونج القابلة للتدخل
Authors: Juan H. Arredondo; Gualán Montaño; Francisco J. Mendoza;

A new characterization of the dual space of the HK-integrable functions

Abstract

<abstract><p>We construct the Henstock-Kurzweil (HK) integral as an extension of a linear form initially defined on $ L^{1} $, but which is not continuous in this space. This gives us an alternative way to prove existing results. In particular, we give a new characterization of the dual space of Henstock-Kurzweil integrable functions in terms of a quotient space.</p></abstract>

Keywords

Theory of Banach Spaces and Operators, Statistics and Probability, Space (punctuation), Dual space, QA1-939, FOS: Mathematics, Complex Analysis and Operator Theory, Mathematical Physics, Integrable system, Algebra over a field, banach dual space, Applied Mathematics, Dual (grammatical number), Physics, henstock-kurzweil integral, Statistical Convergence in Approximation Theory and Functional Analysis, Pure mathematics, Optics, Computer science, Operating system, Lipschitz Functions, Literature, Physical Sciences, Mathematics, Characterization (materials science), Art

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold