
handle: 1885/75250
This paper presents a case for the use of higher-order logic as a foundation for computational logic. A suitable polymorphically-typed, higher-order logic is introduced and its syntax and proof theory briefly described. In addition, a metric space of closed terms suitable for knowledge representation purposes is presented. The approach to representing individuals is illustrated with some examples, as is the technique of programming with abstractions. The paper concludes by placing the results in the wider context of previous and current research in the use of higher-order logic in computational logic.
Metric spaces, Higher order logic, Knowledge representation, Proof theory, Keywords: Computational logic, Logic programming
Metric spaces, Higher order logic, Knowledge representation, Proof theory, Keywords: Computational logic, Logic programming
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
