Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositório da Unive...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/eeeic/...
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Advanced Generative Deep Learning Framework for Probabilistic Spatio-temporal Wind Power Forecasting

Authors: Jalali, S. M.; Khodayar, M.; Khosravi, A.; Nahavandi, S.; Catalão, João P. S.; Osório, Gerardo J.;

An Advanced Generative Deep Learning Framework for Probabilistic Spatio-temporal Wind Power Forecasting

Abstract

This paper presents a deep generative model for capturing the conditional probability distribution of future wind power given its history by modeling and pattern recognition in a dynamic graph. The dynamic nodes show the wind sites while the dynamic edges reflect the correlation between the nodes. We propose a scalable optimization model, which is theoretically proved to catch distributions at nodes of the graph, contrary with all learning formulations in the sector of discriminatory pattern recognition. The density of probabilities for each node can be used as samples in our framework. This probabilistic deep convolutional Auto-encoder (PDCA), is based on the deep learning of localized first-order approximation of spectral graph convolutions, a novel evolutionary algorithm and the Bayesian variational inference concepts. The presented generative model is used for the spatiotemporal probabilistic wind power problem in a wide 25 wind sites located in California, the USA for up to 24 hr ahead prediction. The experimental findings reveal that our proposed model outperforms other competitive temporal and spatio-temporal algorithms in terms of reliability, sharpness, and continuous ranked probability score.

Keywords

Probabilistic forecasting, Evolutionary algorithm, Variational bayesian inference, Deep learning, Spectral graph convulutions

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Green