Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Parallel ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Parallel and Distributed Computing
Article . 2017 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coordinated cooperative task computing using crash-prone processors with unreliable multicast

Authors: Davtyan, S.; De Prisco, R.; Georgiou, Chryssis; Hadjistasi, Theophanis; Schwarzmann, A. A.; Davtyan, S.; De Prisco, R.; +3 Authors

Coordinated cooperative task computing using crash-prone processors with unreliable multicast

Abstract

Abstract This paper presents a new message-passing algorithm, called Do-UM, for distributed cooperative task computing in synchronous settings where processors may crash, and where any multicasts (or broadcasts) performed by crashing processors are unreliable. We specify the algorithm, prove its correctness and analyse its complexity. We show that its worst case available processor steps is S = Θ t + n log n log log n + f ( n − f ) and that the number of messages sent is less than n 2 t + n f 2 , where n is the number of processors, t is the number of tasks to be executed and f is the number of failures. To assess the performance of the algorithm in practical scenarios, we perform an experimental evaluation on a planetary-scale distributed platform. This also allows us to compare our algorithm with the currently best algorithm that is, however, explicitly designed to use reliable multicast; the results suggest that our algorithm does not lose much efficiency in order to cope with unreliable multicast.

Keywords

Crash faults; Fault-tolerant distributed algorithms; Task computing; Unreliable multicast; Theoretical Computer Science; Software; Hardware and Architecture; Computer Networks and Communications; Artificial Intelligence, Crash faults, Experimental evaluation, Multicasting, Unreliable multicast, Message passing, Distributed platforms, Task computing, Cooperative tasks, Message passing algorithm, Fault-tolerant distributed algorithms, Reliable Multicast, Fault-tolerant

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!