Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Australian National ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computers
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Approximation Algorithms for Capacitated Minimum Forest Problems in Wireless Sensor Networks with a Mobile Sink

Authors: Liang, Weifa; Schweitzer, Pascal; Xu, Zichuan (Edward);

Approximation Algorithms for Capacitated Minimum Forest Problems in Wireless Sensor Networks with a Mobile Sink

Abstract

To deploy a wireless sensor network for the purpose of large-scale monitoring, in this paper, we propose a heterogeneous and hierarchical wireless sensor network architecture. The architecture consists of sensor nodes, gateway nodes, and mobile sinks. The sensors transmit their sensing data to the gateway nodes for temporary storage through multihop relays, while the mobile sinks travel along predetermined trajectories to collect data from nearby gateway nodes. Under this paradigm of data gathering, we formulate a novel constrained optimization problem, namely, the capacitated minimum forest (CMF) problem, for the decision version of which we first show NP-completeness. We then devise approximation algorithms and provide upper bounds for their approximation ratios. We finally evaluate the performance of the proposed algorithms through experimental simulation. In our experiments, the approximation ratio delivered by the proposed algorithms is always less than 2. In the case of arbitrary gateway capacities, this contrasts our theoretical results which show that the approximation ratio is at most linear in the number of gateways. Our experiments thus indicate that for realistic inputs, our worst case analysis of the approximation ratio is very conservative. The proposed algorithms are the first approximation algorithms for the CMF problem, and our techniques may be applicable to other constrained optimization problems beyond wireless sensor networks.

Keywords

Constrained optimization problem, Constrained optimi-zation problems, Hierarchical wireless sensor networks, Sink mobility, Wireless sensor networks, Large-scale monitoring, Digital storage Capacitated minimum forest problem, Capacitated minimum forest problem, Data gathering, Experimental simulations, Constrained optimization, Keywords: Approximation ratios

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    40
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
40
Top 10%
Top 10%
Top 10%
Green
bronze