Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2019
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Local Computation Algorithms for Spanners

Authors: Parter, Merav; Rubinfeld, Ronitt; Vakilian, Ali; Yodpinyanee, Anak;

Local Computation Algorithms for Spanners

Abstract

A graph spanner is a fundamental graph structure that faithfully preserves the pairwise distances in the input graph up to a small multiplicative stretch. The common objective in the computation of spanners is to achieve the best-known existential size-stretch trade-off efficiently. Classical models and algorithmic analysis of graph spanners essentially assume that the algorithm can read the input graph, construct the desired spanner, and write the answer to the output tape. However, when considering massive graphs containing millions or even billions of nodes not only the input graph, but also the output spanner might be too large for a single processor to store. To tackle this challenge, we initiate the study of local computation algorithms (LCAs) for graph spanners in general graphs, where the algorithm should locally decide whether a given edge $(u,v) \in E$ belongs to the output spanner. Such LCAs give the user the `illusion' that a specific sparse spanner for the graph is maintained, without ever fully computing it. We present the following results: -For general $n$-vertex graphs and $r \in \{2,3\}$, there exists an LCA for $(2r-1)$-spanners with $\widetilde{O}(n^{1+1/r})$ edges and sublinear probe complexity of $\widetilde{O}(n^{1-1/2r})$. These size/stretch tradeoffs are best possible (up to polylogarithmic factors). -For every $k \geq 1$ and $n$-vertex graph with maximum degree $��$, there exists an LCA for $O(k^2)$ spanners with $\widetilde{O}(n^{1+1/k})$ edges, probe complexity of $\widetilde{O}(��^4 n^{2/3})$, and random seed of size $\mathrm{polylog}(n)$. This improves upon, and extends the work of [Lenzen-Levi, 2018]. We also complement our results by providing a polynomial lower bound on the probe complexity of LCAs for graph spanners that holds even for the simpler task of computing a sparse connected subgraph with $o(m)$ edges.

An extended abstract appeared in the proceedings of ITCS 2019

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), Local Computation Algorithms, Sub-linear Algorithms, 004, Graph Spanners, Computer Science - Data Structures and Algorithms, Data Structures and Algorithms (cs.DS), Computer Science - Discrete Mathematics, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green