Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Universidad de Chile...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Information Theory
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Hal
Article . 2020
Data sources: Hal
https://dx.doi.org/10.48550/ar...
Article . 2017
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Universal Weak Variable-Length Source Coding on Countably Infinite Alphabets

Authors: Jorge F. Silva; Pablo Piantanida;

Universal Weak Variable-Length Source Coding on Countably Infinite Alphabets

Abstract

Motivated from the fact that universal source coding on countably infinite alphabets is not feasible, this work introduces the notion of almost lossless source coding. Analog to the weak variable-length source coding problem studied by Han (IEEE TIT, 2000, 46, 1217-1226), almost lossless source coding aims at relaxing the lossless block-wise assumption to allow an average per-letter distortion that vanishes asymptotically as the block-length tends to infinity. In this setup, we show on one hand that Shannon entropy characterizes the minimum achievable rate (similarly to the case of finite alphabet sources) while on the other that almost lossless universal source coding becomes feasible for the family of finite-entropy stationary memoryless sources with infinite alphabets. Furthermore, we study a stronger notion of almost lossless universality that demands uniform convergence of the average per-letter distortion to zero, where we establish a necessary and sufficient condition for the so-called family of envelope distributions to achieve it. Remarkably, this condition is the same necessary and sufficient condition needed for the existence of a strongly minimax (lossless) universal source code for the family of envelope distributions. Finally, we show that an almost lossless coding scheme offers faster rate of convergence for the (minimax) redundancy compared to the well-known information radius developed for the lossless case at the expense of tolerating a non-zero distortion that vanishes to zero as the block-length grows. This shows that even when lossless universality is feasible, an almost lossless scheme can offer different regimes on the rates of convergence of the (worst case) redundancy versus the (worst case) distortion.

This article has been accepted for publication by IEEE. Digital Object Identifier 10.1109/TIT.2019.2941895. Link: https://ieeexplore.ieee.org/document/8840879. The material in this paper was partially published in ISIT2016 [1] and ISIT2017 [2], International Symposium on Information Theory (ISIT)

Keywords

FOS: Computer and information sciences, [SPI] Engineering Sciences [physics], Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
Green
bronze