Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The International Jo...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The International Journal of Advanced Manufacturing Technology
Article . 2014 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions

Authors: Khalili-Damghani, Kaveh; Tavana, Madjid; Amirkhan, Mohammad;

A fuzzy bi-objective mixed-integer programming method for solving supply chain network design problems under ambiguous and vague conditions

Abstract

Supply chain (SC) network design problems are complex problems with multi-layer levels and dynamic relationships which involve a considerable amount of uncertainty concerning customer demand, facility capacity, or lead times, among others. A large number of optimization methods (i.e., fuzzy mathematical programming, stochastic programming, and interval mathematical programming) have been proposed to cope with the uncertainties in SC network design problems. We propose a fuzzy bi-objective mixed-integer linear programming (MILP) model to enhance the material flow in dual-channel, multi-item, and multi-objective SCs with multiple echelons under both ambiguous and vague conditions, concurrently. We use a computationally efficient ranking method to resolve the ambiguity of the parameters and propose two methods for resolving the vagueness of the objective functions in the proposed fuzzy MILP model. The preferences of the decision makers (DMs) on the priority of the fuzzy goals are represented with crisp importance weights in the first method and fuzzy preference relations in the second method. The fuzzy preference relations in the second method present a unique practical application of type-II fuzzy sets. The performance of the two methods is compared using comprehensive statistical analysis. The results show the perspicuous dominance of the method which uses fuzzy preference relations (i.e., type-II fuzzy sets). We present a case study in the food industry to demonstrate the applicability of the proposed model and exhibit the efficacy of the procedures and algorithms. To the best of our knowledge, a concurrent interpretation of both ambiguous and vague uncertainties, which is applicable to many real-life problems, is novel and has not been reported in the literature.

Country
United States
Related Organizations
Keywords

Ambiguity, Fuzzy sets, Mathematical programming, Fuzzy preference relations, 650, 004, Business Intelligence, Vagueness, Business, Operations and Supply Chain Management, Technology and Innovation, Supply chain network

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!