
arXiv: 1507.00640
We study computational complexity of the class of distance-constrained graph labeling problems from the fixed parameter tractability point of view. The parameters studied are neighborhood diversity and clique width. We rephrase the distance constrained graph labeling problem as a specific uniform variant of the Channel Assignment problem and show that this problem is fixed parameter tractable when parameterized by the neighborhood diversity together with the largest weight. Consequently, every $L(p_1, p_2, \dots, p_k)$-labeling problem is FPT when parameterized by the neighborhood diversity, the maximum $p_i$ and $k.$ Our results yield also FPT algorithms for all $L(p_1, p_2, \dots, p_k)$-labeling problems when parameterized by the size of a minimum vertex cover, answering an open question of Fiala et al.: Parameterized complexity of coloring problems: Treewidth versus vertex cover. The same consequence applies on Channel Assignment when the maximum weight is additionally included among the parameters. Finally, we show that the uniform variant of the Channel Assignment problem becomes NP-complete when generalized to graphs of bounded clique width.
Comment: 14 pages, 4 figers
G.2.2, 05C78, Computer Science - Discrete Mathematics
G.2.2, 05C78, Computer Science - Discrete Mathematics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
