Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Halarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2023
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/aicas5...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Conference object
Data sources: DBLP
Research Collection
Conference object . 2023
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Embedded neuromorphic attention model leveraging a novel low-power heterogeneous platform

Authors: Gruel, Amélie; Mauro, Alfio di; Hunziker, Robin; Benini, Luca; Martinet, Jean; Magno, Michele;

Embedded neuromorphic attention model leveraging a novel low-power heterogeneous platform

Abstract

Neuromorphic computing has been identified as an ideal candidate to exploit the potential of event-based cameras, a promising sensor for embedded computer vision. However, state-of-the-art neuromorphic models try to maximize the model performance on large platforms rather than a trade-off between memory requirements and performance. We present the first deployment of an embedded neuromorphic algorithm on Kraken, a low-power RISC-V-based SoC prototype including a neuromorphic spiking neural network (SNN) accelerator. In addition, the model employed in this paper was designed to achieve visual attention detection on event data while minimizing the neuronal populations’ size and the inference latency. Experimental results show that it is possible to achieve saliency detection in event data with a delay of 32ms, maintains classification accuracy of 84.51% and consumes only 3.85mJ per second of processed input data, achieving all of this while processing input data 10 times faster than real-time. This trade-off between decision latency, power consumption, accuracy, and run time significantly outperforms those achieved by previous implementations on CPU and neuromorphic hardware.

Countries
Italy, Switzerland
Keywords

Academic platform, [INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV], [SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics, Neuromorphic; Embedded system; Event camera; Academic platform, Neuromorphic, Visualization , Neuromorphics , Computational modeling , Inference algorithms , Hardware , Data models , Real-time systems, [INFO] Computer Science [cs], Embedded system, Event camera, Visual attention, OPAL-Meso

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green