Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/88...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/8s...
Other literature type . 2024
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A third-order numerical method for solving fractional ordinary differential equations

طريقة رقمية من الدرجة الثالثة لحل المعادلات التفاضلية العادية الكسرية
Authors: Xiaopeng Yi; Chongyang Liu; H. T. Cheong; Kok Lay Teo; Song Wang;

A third-order numerical method for solving fractional ordinary differential equations

Abstract

<p>In this paper, we developed a novel numerical method for solving general nonlinear fractional ordinary differential equations (FODEs). First, we transformed the nonlinear FODEs into the equivalent Volterra integral equations. We then developed a time-stepping algorithm for the numerical solution of the Volterra integral equations based on the third-order Taylor expansion for approximating the integrands in the Volterra integral equations on a chosen mesh with the mesh parameter $ h $. This approximation led to implicit nonlinear algebraic equations in the unknowns at each given mesh point, and an iterative algorithm based on Newton's method was developed to solve the resulting implicit equations. A convergence analysis of this numerical scheme showed that the error between the exact solution and numerical solution at each mesh point is $ \mathcal{O}(h^{3}) $, independent of the fractional order. Finally, four numerical examples were solved to verify the theoretical results and demonstrate the effectiveness of the proposed method.</p>

Related Organizations
Keywords

Economics, Mathematical analysis, Quantum mechanics, implicit scheme, convergence analysis, Convergence Analysis of Iterative Methods for Nonlinear Equations, Higher-Order Methods, Differential equation, Numerical Integration Methods for Differential Equations, QA1-939, FOS: Mathematics, Taylor series, Nonlinear Equations, Anomalous Diffusion Modeling and Analysis, Integral equation, Economic growth, newton's method, Numerical Analysis, Physics, time-stepping discretization, Volterra integral equation, Applied mathematics, fractional ordinary differential equations, Modeling and Simulation, Physical Sciences, Convergence (economics), Nonlinear system, Fractional Calculus, Numerical Integration, Mathematics, Ordinary differential equation, Numerical analysis, Algebraic equation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
gold
Beta
sdg_colorsSDGs:
Related to Research communities