Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Recolector de Cienci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aquaculture
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DIGITAL.CSIC
Article . 2024 . Peer-reviewed
Data sources: DIGITAL.CSIC
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Aquaculture
Article . 2016 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes

Authors: Luisa M.P. Valente; Eduarda M. Cabral; Vera Sousa; Luis M. Cunha; Jorge M.O. Fernandes;

Plant protein blends in diets for Senegalese sole affect skeletal muscle growth, flesh texture and the expression of related genes

Abstract

Skeletal muscle growth and flesh quality were evaluated in Senegalese sole fed plant protein (PP) diets. A control fish meal-based diet (FM) was compared with three isonitrogenous (54%) and isolipidic (9%) diets with increasing levels of PP blends (50% PP50, 75% PP75 and 100% PP100). By the end of the experiment sole fed PP50 and PP75 had a body length similar to the CTR (25 cm), but fish fed PP100 were significantly smaller (23 cm). Total FM replacement (PP100) resulted in significantly smaller muscle cross sectional area mainly due to a decrease in the muscle fibre size as the total number of fibres did not vary significantly among treatments. The dietary incorporation of PP significantly reduced the expression of several key genes involved in myogenesis and muscle growth (mrf4, fgf6, myhc and mylc2). Fillet texture was affected by the total substitution of FM. Fish fed PP100 diet had a significantly higher modulus of elasticity (lower flesh stiffness) compared with the other groups. Muscle fibre size was moderately related (r = 0.573) to the modulus of elasticity and positively correlated with the expression of lysyl oxidase (r = 0.495). Muscle cellularity changes were not associated with the expression of texture-related genes (capn2, ctsb, ctsd), since no significant differences were observed among diets. The present results point towards a modulation of the expression of several muscle growth related genes by increasing levels of PP sources that alter muscle cellularity and textural properties of Senegalese sole when total FM is replaced by PP. Statement of relevance: The biological basis through which sustainable and practical plant protein diets (PP) affect flesh texture determinants is extremely scarce so the present results will be valuable to the aquafeed industry, fish producers and final consumers. This study clearly shows that PP diets reduced expression of several key genes involved in myogenesis and muscle growth and can hence affect fish growth potential at long term. This study identifies useful markers that correlated well with muscle cellularity and muscle growth and can be further used to select the most appropriate diets for a fish species

9 pages, 2 figures, 5 tables

Peer reviewed

Countries
Spain, Norway
Keywords

VDP::Agriculture and fishery disciplines: 900::Fisheries science: 920::Aquaculture: 922, Muscle cellularity, Flesh stiffness, Solea senegalensis, Flatfish nutrition, Texture-related genes, VDP::Mathematics and natural science: 400::Basic biosciences: 470::Genetics and genomics: 474

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    75
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 52
    download downloads 83
  • 52
    views
    83
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
75
Top 1%
Top 10%
Top 10%
52
83
Green
hybrid