Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Food Prot...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Food Protection
Article . 2011 . Peer-reviewed
License: Elsevier Non-Commercial
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of pH and Water Activity on the Growth Limits of Listeria monocytogenes in a Cheese Matrix at Two Contamination Levels

Authors: Schvartzman Echenique, Maria Sol; Belessi, C.; Butler, F.; Skandamis, P. N.; Jordan, K. N.;

Effect of pH and Water Activity on the Growth Limits of Listeria monocytogenes in a Cheese Matrix at Two Contamination Levels

Abstract

Listeria monocytogenes can proliferate at the beginning of cheesemaking as the conditions favor growth. The objective of this study was to establish the growth limits of L. monocytogenes in a cheese matrix, in case of potential contamination of the milk prior to cheese manufacture. A semisoft laboratory scale model cheese system was made at different initial pH and water activity (a(w)) levels with a mix of two strains of L. monocytogenes. A factorial design of five pH values (5.6 to 6.5), four a(w) values (0.938 to 0.96), and two L. monocytogenes inoculation levels (1 to 20 CFU/ml and 500 to 1,000 CFU/ml) was carried out. Each combination was evaluated in six independent replicates. In order to determine if there was a dominant strain, isolated colonies from the cheeses were analyzed by pulsed-field gel electrophoresis. The data relating to growth initiation were fitted to a logistic regression model. The a(w) of milk influenced the probability of growth initiation of L. monocytogenes at both low and high contamination levels. The pH, at the concentrations tested, had a lower effect on the probability of growth initiation. At pH 6.5 and a(w) of 0.99 for low contamination levels and pH 6.5 and a(w) of 0.97 for high contamination levels, increases in population of up to 4 and 2 log were observed at low and high contamination levels, respectively. This shows that if conditions are favorable for growth initiation at the early stages of the cheesemaking process, contamination of milk, even with low numbers, could lead to L. monocytogenes populations that exceed the European Union's microbiological limit of 100 CFU/g of cheese.

Keywords

Water/metabolism, Food Handling, Food Handling/methods, Colony Count, Microbial, Listeria monocytogenes/growth & development/metabolism, Water, Food Contamination, Hydrogen-Ion Concentration, Life sciences, Listeria monocytogenes, Electrophoresis, Gel, Pulsed-Field, Food science, Cheese, Consumer Product Safety, Cheese/microbiology, Sciences des denrées alimentaires, Fermentation, Sciences du vivant, Food Microbiology, Food Contamination/analysis, Humans

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 10%
Top 10%
Top 10%
gold