
This paper presents a novel vision based approach for detecting rows of crop in paddy field. The precise detection of crop row enables a farm-tractor to autonomously navigate the field for successful inter-row weeding. While prior works on crop row detection rely primarily on various image based features, a deep neural network based approach for learning semantic graphics to directly extract the crop rows from an input image is used in this work. A deep convolutional encoder decoder network is trained to detect the crop lines using semantic graphics. The detected crop lines are then used to derive control signal for steering the tractor autonomously in the field. The results demonstrate that the proposed method is able to detect the rows of paddy accurately and enable the tractor to navigate autonomously along the crop rows even with a simple proportional only controller.
Convolutional encoder-decoder network, semantic graphics, vision based control, crop line detection, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Convolutional encoder-decoder network, semantic graphics, vision based control, crop line detection, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 55 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
