
doi: 10.1002/nme.1612
AbstractBased on the Neumann series expansion and epsilon‐algorithm, a new eigensolution reanalysis method is developed. In the solution process, the basis vectors can be obtained using the matrix perturbation or the Neumann series expansion to construct the vector sequence, and then using the epsilon algorithm table to obtain the approximate eigenvectors. The approximate eigenvalues are computed from the Rayleigh quotients. The solution steps are straightforward and it is easy to implement with the general finite element analysis system. Two numerical examples, a 40‐storey frame and a chassis structure, are given to demonstrate the application of the present method. By comparing with the exact solutions and the Kirsch method solutions, it is shown that the excellent results are obtained for very large changes in the design, and that the accuracy of the epsilon‐algorithm is higher than that of the Kirsch method and the computation time is less than that of the Kirsch method. Copyright © 2005 John Wiley & Sons, Ltd.
large changes of structural parameters, Neumann series expansion, 518, epsilon-algorithm, matrix perturbation, eigensolution reanalysis
large changes of structural parameters, Neumann series expansion, 518, epsilon-algorithm, matrix perturbation, eigensolution reanalysis
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 23 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
