Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5220/000738...
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Conference object . 2019
Data sources: Hal
https://doi.org/10.5220/000738...
Article . 2019 . Peer-reviewed
Data sources: Crossref
https://doi.org/10.5220/000738...
Article . 2019 . Peer-reviewed
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Flight Radius Algorithms

Authors: Assia Kamal Idrissi; Arnaud Malapert; Rémi Jolin;

Flight Radius Algorithms

Abstract

In this article, we present the flight radius problem (FRP) on the condensed flight network (CFN). Then, giving a specific flight that is defined by an origin and destination (OD) pair, the problem consists in finding routes that connect the OD pair and satisfy a regret constraint on time, distance or cost. The found routes help airline manager to find business opportunities. This problem arises in the real world, for instance in some air transportation companies. The FRP is formulated as finding a maximal subgraph of nodes belonging to routes satisfying a regret constraint. Such routes can be found using shortest paths algorithms (SPA). The CFN is generated using a time-independent approach and stored in the graph database Neo4j. Implementing SPA in Neo4j is challenging since the graph database stores the weights of the graph in a separate data structure. In this paper, we propose four methods to solve the FRP: these methods combine parallel and sequential processing with more optimization to overcome time and memory costs. The experimental evaluation demonstrates that the best algorithm is the extended Dijkstra algorithm which meets the real-time constraints of the targeted industrial application.

Keywords

Shortest Path Algorithms, Graph Database, Time-independent Model, [INFO] Computer Science [cs], [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC], Flight Radius Problem

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid