
Avec la dépendance croissante à la technologie dans les systèmes de gestion du trafic, assurer la sécurité routière et protéger l'intégrité de ces systèmes contre les cybermenaces sont devenus des préoccupations critiques. Ce document de recherche étudie le potentiel des techniques d'apprentissage par renforcement pour améliorer à la fois la sécurité routière et la cybersécurité des systèmes de gestion du trafic. L'article explore les fondements théoriques de l'apprentissage par renforcement, discute de ses applications dans la gestion du trafic et présente des études de cas et des preuves empiriques démontrant son efficacité pour améliorer la sécurité routière et atténuer les risques de cybersécurité. Les résultats indiquent que l'apprentissage par renforcement peut contribuer au développement de systèmes de gestion du trafic intelligents et sécurisés, minimisant ainsi les accidents et protégeant contre les cyberattaques.
Con la creciente dependencia de la tecnología en los sistemas de gestión del tráfico, garantizar la seguridad vial y proteger la integridad de estos sistemas contra las amenazas cibernéticas se han convertido en preocupaciones críticas. Este trabajo de investigación investiga el potencial de las técnicas de aprendizaje por refuerzo para mejorar tanto la seguridad vial como la ciberseguridad de los sistemas de gestión del tráfico. El documento explora los fundamentos teóricos del aprendizaje por refuerzo, discute sus aplicaciones en la gestión del tráfico y presenta estudios de casos y evidencia empírica que demuestran su efectividad para mejorar la seguridad vial y mitigar los riesgos de ciberseguridad. Los hallazgos indican que el aprendizaje por refuerzo puede contribuir al desarrollo de sistemas de gestión del tráfico inteligentes y seguros, minimizando así los accidentes y protegiendo contra los ciberataques.
With the increasing reliance on technology in traffic management systems, ensuring road safety and protecting the integrity of these systems against cyber threats have become critical concerns. This research paper investigates the potential of reinforcement learning techniques in enhancing both road safety and cyber security of traffic management systems. The paper explores the theoretical foundations of reinforcement learning, discusses its applications in traffic management, and presents case studies and empirical evidence demonstrating its effectiveness in improving road safety and mitigating cyber security risks. The findings indicate that reinforcement learning can contribute to the development of intelligent and secure traffic management systems, thus minimizing accidents and protecting against cyber-attacks.
مع زيادة الاعتماد على التكنولوجيا في أنظمة إدارة حركة المرور، أصبح ضمان السلامة على الطرق وحماية سلامة هذه الأنظمة ضد التهديدات السيبرانية مصدر قلق بالغ الأهمية. تبحث هذه الورقة البحثية في إمكانات تقنيات التعلم المعزز في تعزيز كل من السلامة على الطرق والأمن السيبراني لأنظمة إدارة حركة المرور. تستكشف الورقة الأسس النظرية للتعلم التعزيزي، وتناقش تطبيقاته في إدارة حركة المرور، وتقدم دراسات حالة وأدلة تجريبية تثبت فعاليته في تحسين السلامة على الطرق والتخفيف من مخاطر الأمن السيبراني. تشير النتائج إلى أن التعلم المعزز يمكن أن يساهم في تطوير أنظمة إدارة حركة مرور ذكية وآمنة، وبالتالي تقليل الحوادث والحماية من الهجمات الإلكترونية.
reinforcement learning, Artificial intelligence, Traffic Signal Control, Cyber security, Intelligent Transportation Systems, Engineering, Computer security, Reinforcement learning, Risk analysis (engineering), Business, Intelligent transportation system, Traffic Flow Prediction and Forecasting, Building and Construction, Transport engineering, traffic management systems, Reinforcement Learning, Computer science, TK1-9971, Integration of Cyber, Physical, and Social Systems, Control and Systems Engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, road safety, Modeling and Control of Traffic Flow Systems
reinforcement learning, Artificial intelligence, Traffic Signal Control, Cyber security, Intelligent Transportation Systems, Engineering, Computer security, Reinforcement learning, Risk analysis (engineering), Business, Intelligent transportation system, Traffic Flow Prediction and Forecasting, Building and Construction, Transport engineering, traffic management systems, Reinforcement Learning, Computer science, TK1-9971, Integration of Cyber, Physical, and Social Systems, Control and Systems Engineering, Physical Sciences, Electrical engineering. Electronics. Nuclear engineering, road safety, Modeling and Control of Traffic Flow Systems
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
