Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Інформаційні техноло...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

METHODOLOGY OF COMPUTER-ORIENTED TEACHING OF DIFFERENTIAL EQUATIONS TO THE STUDENTS OF A HIGHER TECHNICAL SCHOOL

Authors: Kateryna V. Vlasenko; Nataliia S. Grudkina; Olena O. Chumak; Iryna V. Sitak;

METHODOLOGY OF COMPUTER-ORIENTED TEACHING OF DIFFERENTIAL EQUATIONS TO THE STUDENTS OF A HIGHER TECHNICAL SCHOOL

Abstract

The article proves that effective training of students of the higher technical school in differential equations can be achieved through the development and implementation of a computer-oriented practical training methodology. The methods, forms, and tools of training are described. The use of an educational site and the educational book «Computer-oriented practical exercises on differential equations» is proposed to contribute to the formation of students' abilities to work with ICT, which allow them to develop skills for creating mathematical models, apply procedures for solving differential equations and their systems, and involve software for analyzing and solving certain models. The goals of training were specified, the use of computer-oriented organizational methods and forms of training were proposed when describing the methodology. Implementation of the methodology involves using the developed system of tasks (mathematical, practical, professionally oriented), which promote conscious use of knowledge and skills to apply differential models in students’ future professional activities. The results of the experimental verification of the developed methodology of computer-oriented practical training in differential equations are presented. Indicators of the evaluation of the effectiveness of implementing the developed methodology in the learning process were: levels of mastering certain academic skills by students, levels of forming students’ skills in mathematical modelling and skills necessary for professional activities of future specialists, in particular, their abilities to use information and communication technologies.

Keywords

mathematical modeling, differential equations, Theory and practice of education, higher technical school, LB5-3640, computer-oriented teaching

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
gold
Beta
sdg_colorsSDGs:
Related to Research communities