
handle: 10397/108603
Abstract This paper aims to find an approximate true sparse solution of an underdetermined linear system. For this purpose, we propose two types of iterative thresholding algorithms with the continuation technique and the truncation technique respectively. We introduce a notion of limited shrinkage thresholding operator and apply it, together with the restricted isometry property, to show that the proposed algorithms converge to an approximate true sparse solution within a tolerance relevant to the noise level and the limited shrinkage magnitude. Applying the obtained results to nonconvex regularization problems with SCAD, MCP and $$\ell _p$$ ℓ p penalty ( $$0\le p \le 1$$ 0 ≤ p ≤ 1 ) and utilizing the recovery bound theory, we establish the convergence of their proximal gradient algorithms to an approximate global solution of nonconvex regularization problems. The established results include the existing convergence theory for $$\ell _1$$ ℓ 1 or $$\ell _0$$ ℓ 0 regularization problems for finding a true sparse solution as special cases. Preliminary numerical results show that our proposed algorithms can find approximate true sparse solutions that are much better than stationary solutions that are found by using the standard proximal gradient algorithm.
Global solution, nonconvex sparse optimization, Iterative thresholding algorithm, sparse solution, Nonconvex programming, global optimization, 510, iterative thresholding algorithm, Numerical mathematical programming methods, Proximal gradient algorithm, global solution, proximal gradient algorithm, Nonconvex sparse optimization, Sparse solution
Global solution, nonconvex sparse optimization, Iterative thresholding algorithm, sparse solution, Nonconvex programming, global optimization, 510, iterative thresholding algorithm, Numerical mathematical programming methods, Proximal gradient algorithm, global solution, proximal gradient algorithm, Nonconvex sparse optimization, Sparse solution
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
