Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ PeerJ Computer Scien...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PeerJ Computer Science
Article . 2024
Data sources: DOAJ
https://dx.doi.org/10.60692/2d...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.60692/md...
Other literature type . 2024
Data sources: Datacite
DBLP
Article
Data sources: DBLP
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A model for new media data mining and analysis in online English teaching using long short-term memory (LSTM) network

نموذج لاستخراج بيانات الوسائط الجديدة وتحليلها في تدريس اللغة الإنجليزية عبر الإنترنت باستخدام شبكة الذاكرة طويلة المدى (LSTM)
Authors: Chen Chen; Muhammad Aleem;

A model for new media data mining and analysis in online English teaching using long short-term memory (LSTM) network

Abstract

To maintain a harmonious teacher-student relationship and enable educators to gain a more insightful understanding of students’ learning progress, this study collects data from learners utilizing the software through a network platform. These data are mainly formed by the user’s learning characteristics, combined with the screen lighting time, built-in inertial sensor attitude, signal strength, network strength and other multi-dimensional characteristics to form the learning observation value, so as to analyze the corresponding learning state, so that teachers can carry out targeted teaching improvement. The article introduces an intelligent classification approach for learning time series, leveraging long short-term memory (LSTM) as the foundation of a deep network model. This model intelligently recognizes the learning status of students. The test results demonstrate that the proposed model achieves highly precise time series recognition using relatively straightforward features. This precision, exceeding 95%, is of significant importance for future applications in learning state recognition, aiding teachers in gaining an intelligent grasp of students’ learning status.

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial neural network, Artificial intelligence, Recurrent neural network, Online teaching ecosystem, Quantum mechanics, Term (time), Artificial Intelligence, GRASP, State (computer science), Machine learning, Teaching Evaluation, New media teaching, Smart Technology and Data Analytics Applications, Educational Data Mining, Artificial Intelligence in Education and Technology, Software engineering, Data-driven Education, Physics, Deep learning, QA75.5-76.95, Computer science, Learning Analytics, Computer Science Applications, Long short term memory, Programming language, Algorithm, Algorithms and Analysis of Algorithms, Online Learning, Multimedia, Electronic computers. Computer science, Computer Science, Physical Sciences, Educational Data Mining and Learning Analytics, Software, Information Systems

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold