
While processor frequency has stagnated over the past two decades, the number of available cores in servers or clusters is still growing, offering the opportunity for significant speed-up in combinatorial optimization. Parallelization of exact methods remains a difficult challenge. We revisit the concept of parallel Branch-and-Bound in the framework of Cost Function Networks. We show how to adapt the anytime Hybrid Best-First Search algorithm in a Master-Worker protocol. The resulting parallel algorithm achieves good load-balancing without introducing new parameters to be tuned as is the case, for example, in Embarrassingly Parallel Search (EPS). It has also a small overhead due to its light communication messages. We performed an experimental evaluation on several benchmarks, comparing our parallel algorithm to its sequential version. We observed linear speed-up in some cases. Our approach compared favourably to the EPS approach and also to a state-of-the-art parallel exact integer programming solver.
2012 ACM Subject Classification Computing methodologies → Parallel algorithms phrases Combinatorial Optimization, Combinatorial Optimization, Parallel Branch-and-Bound, CFN, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC], 004, ddc: ddc:004
2012 ACM Subject Classification Computing methodologies → Parallel algorithms phrases Combinatorial Optimization, Combinatorial Optimization, Parallel Branch-and-Bound, CFN, [INFO.INFO-RO] Computer Science [cs]/Operations Research [math.OC], 004, ddc: ddc:004
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
