Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ HAL Arts et Métiersarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL Arts et Métiers
Conference object . 2019
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
HAL INRAE
Conference object . 2019
Data sources: HAL INRAE
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Three-dimensional fully coupled thermo-mechanical analysis of compositestructures by means of FE2 computations

Authors: Tikarrouchine, El-Hadi; Chatzigeorgiou, Georges; Chemisky, Yves; Meraghni, Fodil;

Three-dimensional fully coupled thermo-mechanical analysis of compositestructures by means of FE2 computations

Abstract

Le présent article propose une approche multi-échelles par éléments finis (FE2). Elle est basée sur le principe d’homo-généisation périodique pour les problèmes thermo-mécaniques fortement couplés. Le but de ce travail est de prédire la réponse macroscopique 3-D non linéaire des structures composites périodiques intégrant l’effet de vitesse de chargement en régime thermo-mécanique couplé. Les lois de comportement des constituants utilisées dans les analyses obéissent auxlois de matériaux standards généralisées, tandis que les équations caractéristiques du problème (loi d’équilibre, première loi de la thermodynamique) sont exprimées et satisfaites aux deux échelles (microscopique et macroscopique). Pour lamise en œuvre numérique de l’approche, le logiciel commercial de calcul par éléments finis Abaqus est utilisé aux deux échelles dans le cadre de petites déformations et rotations. Un ensemble de scripts python et sous-programme utilisateur(UMAT) sont développés pour permettre la connexion entre la structure macroscopique et la cellule unitaire microscopique attachée à chaque point d’intégration macroscopique. Le cadre développé est appliqué pour la simulation des structures composites 3-D complexes constitués d’une matrice thermo-élastique-viscoplastique et des fibres thermo-élastiques. Les capacités et les performances de l’approche sont illustrées à l’aide d’exemples numériques appropriés.

The current paper presents a two scale Finite Element approach (FE2), adopting the periodic homogenization method, forfully coupled thermo-mechanical processes. The aim of this work is to predict the overall response of rate-dependent, non-linear, thermo-mechanically coupled problems of 3D periodic composite structures. The material constituents implicated in the analyses obey generalized standard materials laws, while the characteristic equations of the problem (balance law,first law of thermodynamics) are expressed and satisfied in both microscopic and macroscopic scales. For the numerical implementation in both scales, the finite element commercial software ABAQUS is utilized in the framework of small strains and rotations. A set of dedicated scripts and a specially designed Meta-UMAT subroutine allow the connection between the macroscopic structure and the micro structure attached to every macroscopic integration point. The two-scale finite element framework is applied to simulate thermo-elastic-viscoplastic response of complex 3D composite structures, andits capabilities are demonstrated with proper numerical examples. It is worth mentioning that the proposed computational strategy can be applied for any kind of 3D periodic microstructure and non-linear constitutive law.

Keywords

homogénéisation périodique, thermo-élastique-viscoplastique, FE2method, thermo-mechanical processes, méthode des EF2, Calcul multi-échelles par élément finis, [SPI.MECA.MSMECA] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Materials and structures in mechanics [physics.class-ph], Multi-scale finite element computation, processus thermo-mécanique, thermo-elastic-viscoplastic material, periodic homogenization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
INRAE