Downloads provided by UsageCounts
Part of the CESAREF consortium, the study presented here is dedicated to the characterization of refractory material properties after usage for potential reuse and recyclability determination. The aim of this doctoral study is to provide an insight on the variation of specific materials’ key properties (such as thermal conductivity, thermal expansion, Young’s module, modulus of rupture) after operations. Mesoscale aging studies may allow to define appropriate Finite Element Models ( to foreseen operative conditions of the refractory. Furthermore, application of an adapted FMECA (Failure Modes, Effects, and Criticality Analysis) fatigue integrated approach can be a further reliable tool to better predict refractories’ lifetime. Also, MCDA (Multi Criteria Decision Approach) implementation could help in detecting the necessary strategies to define the most convenient recycling routes.
Sustainability, Numerical modelling, Refractories, Recycling
Sustainability, Numerical modelling, Refractories, Recycling
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 2 | |
| downloads | 1 |

Views provided by UsageCounts
Downloads provided by UsageCounts