Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2024
Data sources: Datacite
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Spatiotemporal landscape of kidney tubular responses to glomerular proteinuria

Authors: Faivre Anna; Bugarski Milica; Rinaldi Anna; Verissimo Thomas; Sakhi Imene; Legouis David; Correia Sara; +5 Authors

Spatiotemporal landscape of kidney tubular responses to glomerular proteinuria

Abstract

Abstract Background Large increases in glomerular protein filtration induce major changes in kidney function and body homeostasis, and increase the risk of cardiovascular disease. We investigated how elevated protein exposure modifies the landscape of tubular function along the entire nephron, to better understand the cellular changes that mediate these important clinical phenomena. Methods We conducted single nuclei RNA sequencing, functional intravital imaging, and antibody staining to spatially map transport processes along the mouse kidney tubule. We then delineated how these are altered in a transgenic mouse model of inducible glomerular proteinuria (POD-ATTAC) at 7 and 28 days. Results were compared to an ischemia-reperfusion injury (IRI) model of tubular damage. Results Glomerular proteinuria activates large-scale and pleotropic changes in tubular cell gene expression in all major nephron sections, and an injury profile that partially overlaps with IRI, suggesting the existence of both specific and non-specific responses. Extension of protein uptake from the early to late part of the proximal tubule results in a substantial shift in the balance of reabsorptive and secretory pathways. Meanwhile, overflow of luminal proteins to the distal tubule causes transcriptional convergence between specialized regions and generalized dedifferentiation. Conclusion Proteinuria is a potent modulator of cell signaling in tubular epithelia and triggers extensive remodeling, in a segment specific manner. These findings could explain some of the well-recognized clinical complications that arise in proteinuric kidney disease, and may also be important for understanding nephron patterning in organ development.

Related Organizations
Keywords

Proteinuria

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 2
  • 31
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
31
2
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!