Downloads provided by UsageCounts
This paper explores three distance measures and three statistical tests for the comparison of music expressed in abc format. We propose a methodology that allows for an analysis at the level of corpora (is the “style” represented in a corpus the same as that in the another corpus?) as well as at the level of item (is the “style” of an item that of the “style” represented in a corpus?). We estimate distributions of distances between item pairs within and between corpora, and test hypotheses that the distributions are identical. We empirically test the impact of distance measure and statistical test using a corpus of Irish traditional dance music and a collection of tunes generated by a machine learning model trained on the same. The proposed methodology has a variety of applications, from computational musicology, to evaluating machine generated music.
QC 20230911
Musicology, Musikvetenskap
Musicology, Musikvetenskap
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 7 | |
| downloads | 6 |

Views provided by UsageCounts
Downloads provided by UsageCounts