Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
ZENODO
Project deliverable . 2023
License: CC BY
Data sources: Datacite
ZENODO
Project deliverable . 2023
License: CC BY
Data sources: Datacite
MPG.PuRe
Research . 2023
Data sources: MPG.PuRe
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

I3D:bio's OMERO training material: Re-usable, adjustable, multi-purpose slides for local user training

Authors: Schmidt, Christian; Bortolomeazzi, Michele; Boissonnet, Tom; Fortmann-Grote, Carsten; Dohle, Julia; Zentis, Peter; Kandpal, Niraj; +4 Authors

I3D:bio's OMERO training material: Re-usable, adjustable, multi-purpose slides for local user training

Abstract

The open-source software OME Remote Objects (OMERO) is a data management software that allows storing, organizing, and annotating bioimaging/microscopy data. OMERO has become one of the best-known systems for bioimage data management in the bioimaging community. The Information Infrastructure for BioImage Data (I3D:bio) project facilitates the uptake of OMERO into research data management (RDM) practices at universities and research institutions in Germany. Since the adoption of OMERO into researchers' daily routines requires intensive training, a broad portfolio of training resources for OMERO is an asset. On top of using the OMERO guides curated by the Open Microscopy Environment Consortium (OME) team, imaging core facility staff at institutions where OMERO is used often prepare additional material tailored to be applicable for their own OMERO instances. Based on experience gathered in the Research Data Management for Microscopy group (RDM4mic) in Germany, and in the use cases in the I3D:bio project, we created a set of reusable, adjustable, openly available slide decks to serve as the basis for tailored training lectures, video tutorials, and self-guided instruction manuals directed at beginners in using OMERO. The material is published as an open educational resource complementing the existing resources for OMERO contributed by the community.

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project I3D:bio, grant number 462231789

Supported by German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB)

Keywords

OMERO, Microscopy, teaching-learning material, Ontologies, Fiji, Training, instructional material, Data management, Bioimaging, teaching aid, Open educational resources

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Beta
sdg_colorsSDGs:
Related to Research communities