Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

FOR-instance: a UAV laser scanning benchmark dataset for semantic and instance segmentation of individual trees

Authors: Puliti, Stefano; Pearse, Grant; Surový, Peter; Wallace, Luke; Hollaus, Markus; Wielgosz, Maciej; Astrup, Rasmus;

FOR-instance: a UAV laser scanning benchmark dataset for semantic and instance segmentation of individual trees

Abstract

The challenge of accurately segmenting individual trees from laser scanning data hinders the assessment of crucial tree parameters necessary for effective forest management, impacting many downstream applications. While dense laser scanning offers detailed 3D representations, automating the segmentation of trees and their structures from point clouds remains difficult. The lack of suitable benchmark datasets and reliance on small datasets have limited method development. The emergence of deep learning models exacerbates the need for standardized benchmarks. Addressing these gaps, the FOR-instance data represent a novel benchmarking dataset to enhance forest measurement using dense airborne laser scanning data, aiding researchers in advancing segmentation methods for forested 3D scenes. In this repository, users will find forest laser scanning point clouds from unamnned aerial vehicle (using Riegl sensors) that are manually segmented according to the individual trees (1130 trees) and semantic classes. The point clouds are subdivided into five data collections representing different forests in Norway, the Czech Republic, Austria, New Zealand, and Australia. These data are meant to be used either for developement of new methods (using the dev data) or for testing of exisitng methods (test data). The data splits are provided in the data_split_metadata.csv file. A full description of the FOR-instance data can be found at http://arxiv.org/abs/2309.01279

Keywords

tree segmentation, laser scanning, deep learning, drone, semantic segmentation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 674
    download downloads 132
  • 674
    views
    132
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
674
132
Related to Research communities