Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2017
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Hhds - Spanish Hiphop Dataset For Music Source Separation

Authors: Martel, Héctor;

Hhds - Spanish Hiphop Dataset For Music Source Separation

Abstract

What is HHDS? HHDS is a reduced compilation of Hip Hop songs, used to train a Convolutional Neural Network (CNN) for audio source separation in [1], built on top of the DeepConvSep framework [2] developed at the Music Technology Group (MTG), Universitat Pompeu Fabra. The structure of HHDS follows the convention of DSD100 [3] (Demixing Secrets Dataset). HHDS contains the separated tracks for the categories of bass, drums, vocals and others in monophonic WAV les with a sampling rate of 44100Hz. The mixture is calculated by normalizing the sum of the tracks. The main difference with respect to DSD100 is that in HHDS there are HipHop songs only, instead of many different genres. The total number of songs is 18, from which 13 are used for training and 5 are used for evaluation. A detailed list of the songs included in the dataset can be found inside the .zip file provided. The reader can also find the code for this dataset in the DeepConvSep repository in the path examples/hiphopss. References [1] "A Deep Learning Approach to Source Separation and Remixing of HipHop music", Héctor Martel, Undergraduate Thesis, Universitat Pompeu Fabra 2016-2017. [2] DeepConvSep repository on GitHub: https://github.com/MTG/DeepConvSep [3] Demixing Secrets Dataset (DSD100), SiSEC2016: http://liutkus.net/DSD100.zip

Related Organizations
Keywords

source separation, hiphop, audio processing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 22
    download downloads 7
  • 22
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
22
7