Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
Data sources: Datacite
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
HAL-CEA
Conference object . 2023
Data sources: HAL-CEA
versions View all 3 versions
addClaim

Performance comparison between federated and centralized learning with a deep learning model on Hoechst stained images

Authors: Alouges, Damien; Wolflein, Georg; Um, In Hwa; Harrison, David; Arandjelovic, Ognjen; Battail, Christophe; Gazut, Stéphane;

Performance comparison between federated and centralized learning with a deep learning model on Hoechst stained images

Abstract

Medical data is not fully exploited by Machine Learning (ML) techniques because the privacy concerns restrict the sharing of sensitive information and consequently the use of centralized ML schemes. Usually, ML models trained on local data are failing to reach their full potential owing to low statistical power. Federated Learning (FL) solves critical issues in the healthcare domain such as data privacy and enables multiple contributors to build a common and robust ML model by sharing local learning parameters without sharing data. FL approaches are mainly evaluated in the literature using benchmarks and the trade-off between accuracy and privacy still has to be more studied in realistic clinical contexts. In this work, we evaluate this trade-off for a CD3/CD8 cells labeling model from Hoechst stained images. Wölflein et al. developed a deep learning GAN model that labels CD3 and CD8 cells from kidney cancer tissue slides stained with Hoechst. The GAN model was trained on 475,000 patches (256x256 pixels) from 8 whole slide images. We modified the training to simulate a FL approach by distributing the learning across several clients and aggregating the parameters to create the overall model. We present the performance comparison between FL and centralized learning.

Country
France
Keywords

[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 13
    download downloads 11
  • 13
    views
    11
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
13
11
Green
Related to Research communities
Cancer Research