Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning: Slices 2,001-3,000

Authors: Kiss, Maximilian B.; Coban, Sophia Bethany; Batenburg, K. Joost; van Leeuwen, Tristan; Lucka, Felix;

2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning: Slices 2,001-3,000

Abstract

This upload contains slices 2,001 – 3,000 from the data collection described in Maximilian B. Kiss, Sophia B. Coban, K. Joost Batenburg, Tristan van Leeuwen, and Felix Lucka “"2DeteCT - A large 2D expandable, trainable, experimental Computed Tomography dataset for machine learning", Sci Data 10, 576 (2023) or arXiv:2306.05907 (2023) Abstract: "Recent research in computational imaging largely focuses on developing machine learning (ML) techniques for image reconstruction, which requires large-scale training datasets consisting of measurement data and ground-truth images. However, suitable experimental datasets for X-ray Computed Tomography (CT) are scarce, and methods are often developed and evaluated only on simulated data. We fill this gap by providing the community with a versatile, open 2D fan-beam CT dataset suitable for developing ML techniques for a range of image reconstruction tasks. To acquire it, we designed a sophisticated, semi-automatic scan procedure that utilizes a highly-flexible laboratory X-ray CT setup. A diverse mix of samples with high natural variability in shape and density was scanned slice-by-slice (5000 slices in total) with high angular and spatial resolution and three different beam characteristics: A high-fidelity, a low-dose and a beam-hardening-inflicted mode. In addition, 750 out-of-distribution slices were scanned with sample and beam variations to accommodate robustness and segmentation tasks. We provide raw projection data, reference reconstructions and segmentations based on an open-source data processing pipeline." The data collection has been acquired using a highly flexible, programmable and custom-built X-ray CT scanner, the FleX-ray scanner, developed by TESCAN-XRE NV, located in the FleX-ray Lab at the Centrum Wiskunde & Informatica (CWI) in Amsterdam, Netherlands. It consists of a cone-beam microfocus X-ray point source (limited to 90 kV and 90 W) that projects polychromatic X-rays onto a 14-bit CMOS (complementary metal-oxide semiconductor) flat panel detector with CsI(Tl) scintillator (Dexella 1512NDT) and 1536-by-1944 pixels, \(74.8\mu m^2\) each. To create a 2D dataset, a fan-beam geometry was mimicked by only reading out the central row of the detector. Between source and detector there is a rotation stage, upon which samples can be mounted. The machine components (i.e., the source, the detector panel, and the rotation stage) are mounted on translation belts that allow the moving of the components independently from one another. Please refer to the paper for all further technical details. The complete dataset can be found via the following links: 1-1000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, OOD. The reference reconstructions and segmentations can be found via the following links: 1-1000, 1001-2000, 2001-3000, 3001-4000, 4001-5000, OOD. The corresponding Python scripts for loading, pre-processing, reconstructing and segmenting the projection data in the way described in the paper can be found on github. A machine-readable file with the used scanning parameters and instrument data for each acquisition mode as well as a script loading it can be found on the GitHub repository as well. Note: It is advisable to use the graphical user interface when decompressing the .zip archives. If you experience a zipbomb error when unzipping the file on a Linux system rerun the command with the UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE environment variable by setting in your .bashrc “export UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE”. For more information or guidance in using the data collection, please get in touch with Maximilian.Kiss [at] cwi.nl Felix.Lucka [at] cwi.nl

Related Organizations
Keywords

reconstruction, segmentation, deep learning, computed tomography, computational imaging, X-ray, machine learning, beam hardening, low dose, experimental data, denoising, dataset, projection data, artifact reduction, sinogram

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 29
    download downloads 63
  • 29
    views
    63
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
29
63
Related to Research communities