Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Data for Simulating the seeder-feeder impacts on cloud ice and precipitation over the Alps

Authors: Zane, Dedekind; Proske Ulrike; Ferrachat Sylvaine; Lohmann Ulrike; Neubauer David;

Data for Simulating the seeder-feeder impacts on cloud ice and precipitation over the Alps

Abstract

The ice phase impacts many important cloud properties and the lifetime of the clouds. Ice particles that sediment into a lower cloud from an upper cloud (external seeder-feeder process) or into the mixed-phase region of a deep cloud from cirrus levels (internal seeder-feeder) can amplify cloud glaciation and enhance surface precipitation. Recently, numerical weather prediction modeling studies have aimed at representing the ice crystal number concentration in mixed-phase clouds more accurately by including secondary ice formation processes. The increase in the ice crystal number concentration can impact the number of ice particles that sediment into the lower cloud and alter its composition and precipitation formation. In the Swiss Alps, the orography permits the formation of orographic clouds, making it ideal for studying the occurrence of multi-layered clouds and the seeder-feeder process. We present results from a case study on May 18, 2016, showing the occurrence frequency of multi-layered clouds and the seeder-feeder process. We included ice-graupel breakup to enhance the ice crystal number concentration and investigate the precipitation formation processes. 47.6\% of all observed clouds were categorized as multi-layered, in which the external seeder-feeder process occurred in 10.3\% of these clouds which is similar to what was found in several studies. In between cloud layers, 58.4\% of the ice particle mass was lost due to sublimation or melting. The external seeder-feeder process was found to be more important, with regard to the impact on precipitation, than the internal seeder-feeder process in this case study. In the case where the external seeder-feeder process was blocked, the average surface precipitation and riming rate over the domain were both reduced by 8.5\% and 3.9\%, respectively. When ice-graupel collisions were allowed, further large reductions were seen in the liquid water fraction and riming rate. Blocking of the internal seeder-feeder process enhanced the liquid water fraction of 6\% compared to a reduction of 5.8\% in the cloud condensate and, therefore, pointing towards the deamplification in cloud glaciation and a reduction in surface precipitation.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 14
  • 14
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
14