Downloads provided by UsageCounts
Abstract The important hypothesis that organic livestock management reduces the prevalence of antimicrobial resistance is either fiercely supported or bitterly contested. Yet, empirical evidence supporting this view remains fragmentary, in part because relationships between antimicrobial use and drug resistance vary dramatically across contexts, hosts, pathogens, and country-specific regulations. Here, we synthesize global policies and definitions of ‘organic’ and ask if organic farming results in notable reductions in the prevalence of antimicrobial resistance when directly examined alongside conventional analogs. We synthesized the results of 72 studies, spanning 22 countries and five pathogens. Our results highlight substantial variations in country-specific policies on drug use and definitions of ‘organic’ that hinder broad-scale and generalizable patterns. Overall, conventional farms had slightly higher levels of antimicrobial resistance (28%) relative to organic counterparts (18%), although we found significant context-dependent variation in this pattern. Notably, environmental samples from organic and conventional farms often exhibited high levels of resistance to medically important drugs, underscoring the need for more stringent and consistent policies to control antimicrobial contaminants in the soil (particularly on organic farms, where the application of conventional manure could faciliate the spread antimicrobial resistance). Taken together, these results emphasize the challenges inherent in understanding links between drug use and drug resistance, the critical need for global standards governing organic policies, and greater investment in viable alternatives for managing disease in livestock.
Organic Agriculture, Farms, Livestock, Science, Q, R, Article, Anti-Bacterial Agents, Anti-Infective Agents, Drug Resistance, Bacterial, Medicine, Animals, antimicrobial resistance
Organic Agriculture, Farms, Livestock, Science, Q, R, Article, Anti-Bacterial Agents, Anti-Infective Agents, Drug Resistance, Bacterial, Medicine, Animals, antimicrobial resistance
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 32 | |
| downloads | 8 |

Views provided by UsageCounts
Downloads provided by UsageCounts