Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

A stepwise approach to search for illicit connections in the storm sewers of Berlin: using EC and DTS

Authors: Gunkel, Michel; Riechel, Mathias; Böckmann, Daniela; Schilperoort, Remy; Gehring, Franziska; Hoppe, Holger; Caradot, Nicolas;

A stepwise approach to search for illicit connections in the storm sewers of Berlin: using EC and DTS

Abstract

Illicit connections to storm sewers have a negative impact on surface water quality in Berlin. To improve water quality in the city, the Berliner Wasserbetriebe intends to locate and eliminate these illicit connections. The current approach using visual and CCTV inspection to pinpoint the exact locations of illicit discharges has proven insufficient: only a limited number of wrong connections have been found this way over the last years. To support utilities in obtaining a cost-effective approach for the search of illicit connections, a stepwise approach has been developed and tested in a storm sewer in Berlin as part of the DWC research project (digital-water.city). This paper presents the approach and the obtained results. • The Berlin Fennsee is suffering from surface water quality issues probably related to illicit connections to storm sewers in the area. • In a stepwise approach, a network of electrical conductivity (EC) sensors was first deployed to identify hotspot areas that likely contain illicit connections. • In a second step, Distributed Temperature Sensing (DTS) was used in one hotspot area to identify the exact location of an illicit connection with multiple discharges per day.

Keywords

distributed temperature sensors (DTS), electrical conductivity, Illicit connections, storm water sewers

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 20
  • 48
    views
    20
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
48
20
Green