Downloads provided by UsageCounts
Associated Publication: https://www.nature.com/articles/s41586-022-05591-3 Overview: Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet’s chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R≈600) transmission spectrum of an exoplanet atmosphere between 3–5 𝛍m covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO2 (28.5\(\sigma\)) and H2O (21.5\(\sigma\)), and identify SO2 as the source of absorption at 4.1 𝛍m (4.8\(\sigma\)). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO2, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.
See associated paper: https://arxiv.org/abs/2211.10488
transmission spectra, jwst, nirspec g395h, atmospheres, wasp39b
transmission spectra, jwst, nirspec g395h, atmospheres, wasp39b
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 291 | |
| downloads | 49 |

Views provided by UsageCounts
Downloads provided by UsageCounts