
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
To harness the full potential of beyond 5G (B5G) communication systems, zero-touch network slicing (NS) is viewed as a promising fully-automated management and orchestration (MANO) system. This paper proposes a novel knowledge plane (KP)-based MANO framework that accommodates and exploits recent NS technologies and is termed KB5G. Specifically, we deliberate on algorithmic innovation and artificial intelligence (AI) in KB5G. We invoke a continuous model-free deep reinforcement learning (DRL) method to minimize energy consumption and virtual network function (VNF) instantiation cost. We present a novel Actor-Critic-based NS approach to stabilize learning called, twin-delayed double-Q soft Actor-Critic (TDSAC) method. The TDSAC enables central unit (CU) to learn continuously to accumulate the knowledge learned in the past to minimize future NS costs. Finally, we present numerical results to showcase the gain of the adopted approach and verify the performance in terms of energy consumption, CPU utilization, and time efficiency.
This work has been supported in part by the research projects 5GSTEPFWD (722429), MonB5G (871780), 5G-SOLUTIONS (856691), AGAUR(2017-SGR-891) and SPOT5G (TEC2017-87456-P).
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
Computer Science - Networking and Internet Architecture, Networking and Internet Architecture (cs.NI), FOS: Computer and information sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 11 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 6 | |
downloads | 7 |