Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
PhysicalObject . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
PhysicalObject . 2022
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/6387...
Other ORP type . 2022
License: CC BY
Data sources: Sygma
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5281/zenodo...
Other ORP type . 2022
License: CC BY
Data sources: Sygma
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Open-source library of microtextured geometries for studying cell-material interactions

Authors: Lantada, Andrés Díaz; Cendrero, Adrián Martínez; Martínez, Francisco Franco;

Open-source library of microtextured geometries for studying cell-material interactions

Abstract

This collection of physical geometries (CAD models) acts as companion to the "Open-source library of tissue engineering scaffolds", shared through Zenodo, and has been also developed within INKplant EU project. The provided collection of microtextured geometries takes into account that the long-term success of most implantable devices, including tissue engineering scaffolds, relies not only on the actual biological, biochemical and biomechanical properties of the employed materials and designed geometries, but also on their surface topographies and related tribological performance. Systematically studying cell-material interactions is a challenging process, standardized to some extent in ISO 10993 that deals with the biocompatibility evaluation of medical devices, but still requiring innovative protocols capable of taking into account the effects of topography on cells. This project provides a comprehensive collection of microtextured geometries designed following biomimetic approaches and benefiting from systematic variations of design parameters, which is expected to provide researchers in tissue engineering, cell-material interactions and molecular biology, with a set of test probes for standardized and comparable in vitro studies. Test probes are designed for being microfabricated, employing both traditional approaches (substractive processes, chemical etching) and additive manufacturing technologies. Together with the library microtextured 2D or 2D1/2 test probes, a subset of microtextured lattices, in fact complex-shaped tissue engineering scaffolds with design controlled surface topographies, is also provided. The aim of these textured scaffolds is to provide examples of microtextures mapped upon 3D porous lattices and networks, with which precision, resolution and repetability of ultra-high precission 3D printing technologies and related biomaterials can be evaluated. The eventual benefits of microtextured scaffolds can be also assessed with these geometries.

Related Organizations
Keywords

Cell-material interactions, EC-INKplant, Regenerative medicine, Bioprinting, Open-source medical devices, Tissue engineering, Cell culture, Biofabrication, INKplant EU project

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 10
    download downloads 1
  • 10
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
10
1
Funded by