Downloads provided by UsageCounts
The researchers propose a supervised machine learning approach to predict partnership formation between universities. The focus is on successful joint R&D projects funded by Horizon 2020 programme in three research domains: Social Sciences and Humanities, Physical and Engineering Sciences, and Life Sciences. The researchers perform two connected analyses: link formation prediction, and feature importance detection. As for link prediction, using out-of-sample cross-validated accuracy and a set of network endogenous and exogenous attributes, the researchers obtain 90% prediction accuracy when both types of attributes are used, and around 65% when using only the exogenous ones. This proves that partnership predictive power is on average 25% larger for universities already incumbent in the programme than for newcomers. As for feature importance, by computing super-learner average partial effects and elasticities, the study finds that the endogenous attributes are the most relevant in affecting the probability to generate a link and observe a largely negative elasticity of the link probability to feature changes, fairly uniform across attributes and domains.
Machine Learning, R&D projects, Horizon 2020 programme, partnership formation, Universities
Machine Learning, R&D projects, Horizon 2020 programme, partnership formation, Universities
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts