Downloads provided by UsageCounts
In this research we have investigated systematically, the structural, electronic, bonding, optical, thermodynamic aspects of the GaAgO2 crystal using first-principles computations based on the density functional theory (DFT). To begin, the bandgap energies of GaAgO2 crystal have estimated to be 0.640 eV and 0.768 eV using the Generalized Gradient Approximation (GGA) based on the Perdew–Burke–Ernzerhof (PBE) and Revised Perdew–Burke–Ernzerhof (RPBE) functional methods. The density of state and partial density of state of GaAgO2 were then simulated to determine the nature of the orbital of the Ga, Ag, and O atoms. The Mulliken population charge and electron density distributions have estimated to further elucidate the bonding nature of GaAgO2. The complex dielectric function, refractive index, reflectivity, absorption coefficient, loss function, and photoconductivity of GaAgO2 are all computed and analyzed in depth for the optical transitions. Additionally, come to the realization of it, the thermo-electronic and thermophysical features have been added to enable this crystal to absorb visible light and retain a stable thermal state, enabling them to be employed in optoelectronic devices such as lasers, solar cells, and even luminescence ones.
Band gap; Electronic structure; DOS; PDOS; Optical; Thermodynamic properties
Band gap; Electronic structure; DOS; PDOS; Optical; Thermodynamic properties
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 7 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 3 | |
| downloads | 8 |

Views provided by UsageCounts
Downloads provided by UsageCounts