Downloads provided by UsageCounts
The ability to discover new cell phenotypes by unsupervised clustering of single-cell transcriptomes has revolutionized biology. Currently, there is no principled way to decide whether a cluster of cells contains meaningful subpopulations that should be further resolved. Here we present phiclust, a clusterability measure derived from random matrix theory, that can be used to identify cell clusters with non-random substructure, testably leading to the discovery of previously overlooked phenotypes.
clusterability, scRNA-seq, random matrix theory
clusterability, scRNA-seq, random matrix theory
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 23 | |
| downloads | 1 |

Views provided by UsageCounts
Downloads provided by UsageCounts