Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2021
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Norwegian Open Research Archives
Part of book or chapter of book . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Application of an ontology based process model construction tool for active protective coatings: Corrosion inhibitor release

Authors: Klein, Peter; Preisig, Heinz A.; Horsch, Martin Thomas; Konchakova, Natalia;

Application of an ontology based process model construction tool for active protective coatings: Corrosion inhibitor release

Abstract

Ontology-based integrated materials modelling for an active protective coating system design is presented and applied to a practical example. For this purpose, an ontological methodology implemented using the ProMo (Process Modelling) suite is developed to be used with an open simulation platform (OSP), i.e., a workflow management and orchestration framework that can be integrated into digital in-frastructures. The target infrastructures, which are under development in various Horizon 2020 projects, include modelling marketplaces, open innovation platforms, and open translation environments among others. Semantic interoperability for the communication between the involved digital infrastructures, including the simulation hubs, relies on the Review of Materials Modelling (RoMM), MODA (Modelling Data), and the Ontology for Simulation, Modelling, and Optimization (OSMO) in combination with the Physicalistic Interpretation of Modelling and Simulation Interoperability Infrastructure (PIMS-II) mid-level ontology, which is aligned with the Elementary Multiperspective Material Ontology (EMMO) as a top-level ontology. The challenge of addressing semantic heterogeneity is addressed by working toward crosswalks between domain-specific and mid-level ontologies for industrially relevant problems, where knowledge graph transformation is evaluated as a candidate solution for a future implementation strategy. The involved semantic artefacts are platform-agnostic, and their EMMO compliance allows for a specification of executable modelling and simulation workflows on multiple EMMO-compliant OSPs. We demonstrate the presented approach on industrial relevant example for development of active corrosion protection of metallic surfaces.

The co-authors P.K., H.A.P., and N.K. acknowledge funding from the Horizon 2020 research and innovation programme of the EU by grant agreement no. 952903, VIPCOAT, and H.A.P. also acknowledges funding from Horizon 2020 by grant agreement no. 760173, MarketPlace. The co-author M.T.H. acknowledges funding by DFG project no. 441926934, NFDI4Cat, within the NFDI programme of the German Joint Science Conference (GWK). This work was facilitated by activities of Inprodat e.V., Kaiserslautern.

Keywords

graph transformation, active protective coating, applied ontology, Elementary Multiperspective Material Ontology, molecular modelling and simulation, process data technology, ontology alignment

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 8
  • 6
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
6
8
Green
gold