Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2021
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Project deliverable . 2021
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Autoencoders for ATLAS Data Compression - George Dialektakis - Google Summer of Code 2021 Project

Authors: Dialektakis George;

Deep Autoencoders for ATLAS Data Compression - George Dialektakis - Google Summer of Code 2021 Project

Abstract

Storage is one of the main limiting factors to the recording of information from proton-proton collision events at the Large Hadron Collider (LHC), at CERN in Geneva. Hence, the ATLAS experiment at the LHC uses a so-called trigger system, which selects and transfers interesting events to the data storage system while filtering out the rest. However, if interesting events are buried in very large backgrounds and difficult to identify as a signal by the trigger system, they will also be discarded together with the background. To alleviate this problem, different compression algorithms are already in use to reduce the size of the data that is recorded. One of those state-of-the-art algorithms is an autoencoder network that tries to implement an approximation to the identity, f(x) = x, and given some input data, its goal is to create a lower-dimensional representation of those data in a latent space using an encoder network. This way when collisions happen on the ATLAS Collider, we run the encoder on the produced data and we save only the latent space representation. Then using this latent representation online the decoder network can reconstruct the original data. The goal of this project is to experiment with different types of Autoencoders for data compression in-depth and optimize their performance in reconstructing the ATLAS event data. For this reason, three kinds of Autoencoders are proposed, and in specific, the Standard Autoencoder, the Variational Autoencoder, and the Sparse Autoencoder. The above Autoencoders and thoroughly tested using different parameters and data normalization techniques, as our ultimate goal is to obtain the best possible reconstructions of the original event data. The proposed implementations will be a decisive contribution towards future testing and analysis for the ATLAS experiment at CERN and will assist overcome the obstacle of needing much more storage space than in the past due to the increase in the size of the data generated by the continuous proton-proton collision events in CERN's Large Hadron Collider. Link to the Implementation of the Project

Related Organizations
Keywords

Machine Learning, Deep Learning, Autoencoders, GSoC, Data Compression, HEP

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 26
  • 31
    views
    26
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
31
26
Green
Related to Research communities