Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2013
License: CC BY NC ND
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Lucerne Open Repository
Conference object . 2013
License: CC BY NC ND
versions View all 2 versions
addClaim

Multi-Point Simultaneous Illuminance Measurement With High Dynamic Range Photography

Authors: Yang, Xiaoming (Autor/in); Grobe, Lars Oliver (Co-Autor/in); Wittkopf, Stephen (Co-Autor/in);

Multi-Point Simultaneous Illuminance Measurement With High Dynamic Range Photography

Abstract

Daylight illuminance uniformity is a common criterion when assessing the performance of fenestration and solar control. To evaluate a design according to this requirement, a grid of horizontal illuminance readings for a given time is required. In simulation based assessments, this can be calculated by defining sensor points at working plane level and running a simulation for a single time step, or an annual simulation to assess the uniformity for a typical year. Backing such predicted assessments with measured data has been a task involving installation and calibration of sensors, cabling and data acquisition systems, which typically render the assessed space unusable for the time of assessment. Using sequential readings from handheld devices as a convenient alternative ignores the dynamics of daylight, as the sky conditions cannot be assumed constant during the time required to record the illuminance at the required amount of locations. We propose instantaneous image-based measurements of horizontal illuminance for assessments of daylight uniformity. Instead of cabled sensors, near-Lambertian reflectors are placed at working plane level in the assessed space. High Dynamic Range (HDR) images of the working plane with markers are taken and the luminance of the marker surfaces is extracted from the corresponding pixel values. These luminance values can be used to calculate horizontal illuminance for each marker location, assuming Lambertian reflection. As direct sunlight at working plane is considered to exceed the range of acceptable illuminance for uniformly lid spaces, only readings below a threshold of 3000 lm/m2 are considered.

+ ID der Publikation: hslu_15193 + Art des Beitrages: Proceeding/Tagungsbeitrag + Herausgeberschaft: Jean-Louis Scartezzini + Seiten: 347 - 352 + Sprache: Englisch + Bemerkungen: Best Paper Award + Letzte Aktualisierung: 2017-04-12 15:46:24

Country
Switzerland
Keywords

daylight, goniophotometry, high dynamic range imaging, illuminance, Lambertian diffuser

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 698
    download downloads 27
  • 698
    views
    27
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
698
27
Green