Downloads provided by UsageCounts
In this work, we propose a framework to address the autonomous impedance regulation problem of robots in a class of constrained manipulation tasks. In this framework, a human arm endpoint stiffness model is used to extract the task stiffness geometry along the constrained trajectory, which is then encoded offline and reproduced online by a Gaussian Mixture Model (GMM) and the Gaussian Mixture Regression (GMR), respectively. Furthermore, the full Cartesian impedance of the robot is formulated through an optimal control problem, i.e., the Linear-Quadratic Regulator (LQR), in which the task stiffness geometry (extracted from human demonstrations) is considered as the time-varying weighting matrix Q. The optimal impedance is eventually realised by the robot through a task geometry consistent Cartesian impedance controller. A tank-based passivity observer is implemented to give evidence on the stability of the system during online impedance variations. To evaluate the performance of the framework, a comparative experiment with three different impedance settings (i.e., the proposed framework, the framework without LQR and the framework without GMM/GMR) for Franka Emika Panda to perform a door opening task was conducted. The results reveal that our framework outperforms the other two, in terms of tracking error and the interaction forces.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 5 | |
| downloads | 72 |

Views provided by UsageCounts
Downloads provided by UsageCounts