
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Parental effects on early life history stages of corals are poorly understood, but with severe environmental disturbances, these impacts may be increasingly important in understanding future coral survival trajectories on reefs. This study investigated whether parental bleaching of Montipora capitata in 2015 influenced symbiont community composition and offspring size three years after recovery. In July 2018, gametes were collected from Reef 13 in K��ne���ohe Bay, O���ahu, Hawai���i and selectively crossed to produce three different parental phenotype histories: 1) both parents previously bleached (���bleached��� phenotype), 2) both parents previously non-bleached (���non-bleached��� phenotype), and 3) crosses from a combination of both parental histories (���crossed��� phenotype). Parental bleaching history affected the symbiont community composition in three different life history stages ��� parents, gametes, and larvae, with the bleached phenotype dominated by Cladocopium and non-bleached phenotype dominated by Durusdinium. Symbiont densities were also different between bleaching phenotypes in parents and gamete bundles but not in larvae, with non-bleached phenotypes having slightly higher symbiont densities than their bleached counterparts. Larvae from each phenotype were then exposed to either ambient or high-temperature conditions for 72 h and larvae from bleached phenotype parents were smallest regardless of temperature treatment. With these findings, larval recruitment to the reef from previously bleached parents is suspected to decline as ocean warming becomes more frequent and severe, potentially leading to generational symbiont community shifts. The direct heritability of thermal tolerance from parent to offspring in M. capitata provides opportunities for restoration by selectively breeding for traits that may increase community resilience to thermal stress.
Phenotype, Coral Bleaching, Kaneohe Bay, Ocean warming, Symbiosis, Montipora capitata
Phenotype, Coral Bleaching, Kaneohe Bay, Ocean warming, Symbiosis, Montipora capitata
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 4 | |
downloads | 1 |