 Downloads provided by UsageCounts
Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The Internet of Things (IoT) and smart city paradigm includes ubiquitous technology to extract context information in order to return useful services to users and citizens. An essential role in this scenario is often played by computer vision applications, requiring the acquisition of images from specific devices. The need for high-end cameras often penalizes this process since they are power-hungry and ask for high computational resources to be processed. Thus, the availability of novel low-power vision sensors, implementing advanced features like in-hardware motion detection, is crucial for computer vision in the IoT domain. Unfortunately, to be highly energy-efficient, these sensors might worsen the perception performance (e.g., resolution, frame rate, color). Therefore, domain-specific pipelines are usually delivered in order to exploit the full potential of these cameras. This paper presents the development, analysis, and embedded implementation of a realtime detection, classification and tracking pipeline able to exploit the full potential of background filtering Smart Vision Sensors (SVS). The power consumption obtained for the inference - which requires 8ms - is 7.5 mW.
Presented at DATE Friday Workshop on System-level Design Methods for Deep Learning on Heterogeneous Architectures (SLOHA 2021) (arXiv:2102.00818)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Vision and Pattern Recognition (cs.CV), Computer Science - Computer Vision and Pattern Recognition, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average | 
| views | 7 | |
| downloads | 6 | 

 Views provided by UsageCounts
Views provided by UsageCounts Downloads provided by UsageCounts
Downloads provided by UsageCounts