Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OPULM PALA

Authors: Arthur, Chavignon; Heiles, Baptiste; Vincent, Hingot; Lopez Pauline; Eliott Teston; Olivier, Couture;
Abstract

Datasets provided for Open Platform for Ultrasound Localization Microscopy: Performance Assessment of Localization Algorithms. Abstract: Ultrasound Localization Microscopy (ULM) is an ultrasound imaging technique that relies on the acoustic response of sub-wavelength ultrasound scatterers to map the microcirculation with an order of magnitude increase in resolution. Initially demonstrated in vitro, this technique has matured and sees implementation in vivo for vascular imaging of organs, and tumors in both animal models and humans. The performance of the localization algorithm greatly defines the quality of vascular mapping. We compiled and implemented a collection of ultrasound localization algorithms and devised three datasets in silico and in vivo to compare their performance through 18 metrics. We also present two novel algorithms designed to increase speed and performance. By openly providing a complete package to perform ULM with the algorithms, the datasets used, and the metrics, we aim to give researchers a tool to identify the optimal localization algorithm for their usage, benchmark their software and enhance the overall image quality in the field while uncovering its limits. This article provides all materials and post-processing scripts and functions. Article to be cited: Heiles, Chavignon, Hingot, Lopez, Teston and Couture. Performance benchmarking of microbubble-localization algorithms for ultrasound localization microscopy, Nature Biomedical Engineering, 2022, (doi.org/10.1038/s41551-021-00824-8). Related processing scripts and codes: github.com/AChavignon/PALA Request on data: arthur.chavignon.pro(at)gmail.com

Keywords

ultrasound contrast agent, vascularization, ultrasound, brain, localization microscopy, microscopy

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 641
    download downloads 1K
  • 641
    views
    1K
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
641
1K
Related to Research communities